El potencial de las redes basadas en la API Google Vision para el estudio de imágenes digitales nativas
Contenido principal del artículo
Resumen
En este artículo presentamos los potenciales de las redes basadas en la API Google Vision para el estudio de las imágenes en línea, abordando tres modalidades importantes como parte de una metodología visual crítica: el contenido de la propia imagen, su forma específica de “audienciación” a través de referencias web (o metadatos de la imagen) y los sitios de circulación de la imagen. En primer lugar, definimos conceptual y técnicamente diferentes redes construidas a partir de ciertas características de visión artificial: imagen-etiqueta, imagen-entidades web e imagen-dominio. En segundo lugar, presentamos un diagrama de protocolo de investigación que ilustra cómo construir redes de imágenes con sus respectivas descripciones o sitios de circulación. En tercer lugar, discutimos las potencialidades de las redes de visión artificial como dispositivos de investigación, enfatizando sus (trans) formaciones relacionales de datos y sus especificidades interpretativas. Se presentarán tres diferentes estudios de caso como ejemplo. En conclusión, sostenemos que una metodología visual de este tipo requiere prácticas técnicas críticas que tengan en cuenta las múltiples capas de mediación técnica que están involucradas.
Descargas
Detalles del artículo
Este obra está bajo una licencia de Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional.
NOTA DE COPYRIGHT
Todos los contenidos de esta edición electrónica se distribuyen bajo licencia Creative Commons de “Atribución-Copartirigual 4.0 Internacional” (CC-BY-SA). Cualquier reproducción total o parcial del material deberá citar su procedencia.
Los derechos de las imágenes publicadas pertenecen a sus autores, quienes otorgan a Diseña la licencia para su uso. La gestión de los permisos y la autorización de publicación de las imágenes (o de cualquier material) que contenga derechos de autor y sus consecuentes derechos de reproducción en esta publicación es de exclusiva responsabilidad de los autores de los artículos.
Citas
Azar, M., Cox, G., & Impett, L. (2021). Introduction: Ways of Machine Seeing. AI & Society. https://doi.org/10.1007/s00146-020-01124-6
Barreto, M. L., Barral-Netto, M., Stabeli, R., Almeida-Filho, N., Vasconcelos, P. F. C., Teixeira, M., Buss, P., & Gadelha, P. E. (2016). Zika Virus and Microcephaly in Brazil: A Scientific Agenda. The Lancet, 387(10022), 919–921. https://doi.org/10.1016/S0140-6736(16)00545-6
Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source Software for Exploring and Manipulating Networks. Proceedings of the International AAAI Conference on Web and Social Media, 3(1), 361–362. https://doi.org/10.1136/qshc.2004.010033
Berners-Lee, T. (1995). Hypertext and Our Collective Destiny [Video]. 1995 Vannevar Bush Symposium - Videos and Links - Doug Engelbart Institute. Retrieved September 20, 2020, from https://www.dougengelbart.org/content/view/258/000/
Chao, J. (2021). Memespector GUI: Graphical User Interface Client for Computer Vision APIs [Computer Software] (Version 0.1) [C#] (Original work published 2021). https://github.com/jason-chao/memespector-gui
Colombo, G. (2018). The Design of Composite Images. Displaying Digital Visual Content for Social Research [Doctoral Dissertation, Politecnico di Milano]. http://hdl.handle.net/10589/141266
d’Andréa, C., & Mintz, A. (2019). Studying the Live Cross-Platform Circulation of Images with Computer Vision API: An Experiment Based on a Sports Media Event. International Journal of Communication, 13, 1825–1845.
Garimella, K., & Eckles, D. (2020). Images and Misinformation in Political Groups: Evidence from WhatsApp in India. Harvard Kennedy School Misinformation Review, 1(5). https://doi.org/10.37016/mr-2020-030
Geboers, M. A., & Van De Wiele, C. T. (2020). Machine Vision and Social Media Images: Why Hashtags Matter. Social Media + Society, 6(2), 2056305120928485. https://doi.org/10.1177/2056305120928485
Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Daumé III, H., & Crawford, K. (2020). Datasheets for Datasets. ArXiv, 1803.09010 [cs].
Gerlitz, C., & Rieder, B. (2018). Tweets Are Not Created Equal: Investigating Twitter’s Client Ecosystem. International Journal of Communication, 12. https://hdl.handle.net/11245.1/4da1d406-1213-4103-8237-eef5ae786948
Gibbs, M., Meese, J., Arnold, M., Nansen, B., & Carter, M. (2015). #Funeral and Instagram: Death, Social Media, and Platform Vernacular. Information, Communication & Society, 18(3), 255–268. https://doi.org/10.1080/1369118X.2014.987152
Google Cloud. (2017, April 13). Pricing | Google Cloud Vision API Documentation. Wayback Machine. https://web.archive.org/web/20170413081619/https://cloud.google.com/vision/docs/pricing
Google User Content. (2020). General Guidelines. https://static.googleusercontent.com/media/guidelines.raterhub.com/pt-BR//searchqualityevaluatorguidelines.pdf
Hochman, N. (2014). The Social Media Image. Big Data & Society, 1(2), 2053951714546645. https://doi.org/10.1177/2053951714546645
Hoelzl, I., & Marie, R. (2015). Softimage: Towards a New Theory of the Digital Image. Intellect.
Jacomy, M. (2013). Table 2 Net [Computer Software]. https://medialab.github.io/table2net/
Jacomy, M. (2019). The Web as Layers [Video]. HYPHE - Session 4. https://panopto.aau.dk/Panopto/Pages/Viewer.aspx?id=48cfe5ff-5503-431b-887f-ab53007ef5c4
Jacomy, M. (2021). Situating Visual Network Analysis [Doctoral Dissertation, Aalborg University]. https://reticular.hypotheses.org/1879
Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. PLOS ONE, 9(6), e98679. https://doi.org/10.1371/journal.pone.0098679
Leetaru, K. (2019, June 1). Using Google Vision AI’s Reverse Image Search To Richly Catalog Television News. Forbes. https://www.forbes.com/sites/kalevleetaru/2019/06/01/using-google-vision-ais-reverse-image-search-to-richly-catalog-television-news/
MacKenzie, A., & Munster, A. (2019). Platform Seeing: Image Ensembles and their Invisualities. Theory, Culture & Society, 36(5), 3–22. https://doi.org/10.1177/0263276419847508
Manovich, L. (2020). Cultural Analytics. MIT Press.
Mauri, M., Briones, M. A., Gobbo, B., & Colombo, G. (2020). Research Protocol Diagrams as Didactic Tools to Act Critically in Dataset Design Processes. INTED2020 Proceedings, 9034–9043. https://library.iated.org/view/MAURI2020RES
Mintz, A., Silva, T., Gobbo, B., Pilipets, E., Azhar, H., Takamitsu, H., Omena, J. J., & Oliveira, T. (2019). Interrogating Vision APIs. #SMARTDataSprint. https://smart.inovamedialab.org/past-editions/smart-2019/project-reports/interrogating-vision-apis/
Niederer, S., & Colombo, G. (2019). Visual Methodologies for Networked Images: Designing Visualizations for Collaborative Research, Cross-platform Analysis, and Public Participation. Diseña, (14), 40–67. https://doi.org/10.7764/disena.14.40-67
Omena, J. J. (in press). Digital Methods and Technicity-of-the-Mediums. From Regimes of Functioning to Digital Research [Doctoral Dissertation]. Universidade NOVA de Lisboa.
Omena, J. J., & Amaral, I. (2019). Sistema de leitura de redes digitais multiplataforma. In J. J. Omena (Ed.), Métodos Digitais: Teoria‐prática‐crítica (pp. 121–140). ICNOVA.
Omena, J. J., & Granado, A. (2020). Call into the Platform! Revista ICONO14 Revista Científica de Comunicación y Tecnologías emergentes, 18(1), 89–122. https://doi.org/10.7195/ri14.v18i1.1436
Omena, J. J., Rabello, E. T., & Mintz, A. G. (2020). Digital Methods for Hashtag Engagement Research. Social Media + Society, 6(3), 2056305120940697. https://doi.org/10.1177/2056305120940697
Paglen, T. (2014, March 13). Seeing Machines. Is Photography Over? Fotomuseum Winterthur Series. https://www.fotomuseum.ch/en/2014/03/13/seeing-machines/
Parikka, J., & Dvořák, T. (2021). Introduction: On the Scale, Quantity and Measure of Images. In T. Dvořák & J. Parikka (Eds.), Photography Off the Scale: Technologies and Theories of the Mass Image (pp. 1–24). Edinburgh University Press.
Pearce, W., Özkula, S. M., Greene, A. K., Teeling, L., Bansard, J. S., Omena, J. J., & Rabello, E. T. (2020). Visual Cross-platform Analysis: Digital Methods to Research Social Media Images. Information, Communication & Society, 23(2), 161–180. https://doi.org/10.1080/1369118X.2018.1486871
Pilipets, E., Flores, A. M. M., Flaim, G., Skazedonig, M., Sepúlveda, R., & Del Nero, S. (2020). From “Tumblr Purge” to “Female Nipples”: Telling a Story of Platform Censorship Critique through Memes and Digital Methods. #SMARTDataSprint. https://smart.inovamedialab.org/2020-digital-methods/project-reports/tumblr-purge-female-nipples/
Pilipets, E., & Paasonen, S. (2020). Nipples, Memes, and Algorithmic Failure: NSFW Critique of Tumblr Censorship. New Media & Society, 1461444820979280. https://doi.org/10.1177/1461444820979280
Rettberg, J. W. (2020). Situated Data Analysis: A New Method for Analysing Encoded Power Relationships in Social Media Platforms and Apps. Humanities and Social Sciences Communications, 7, Art. 5. https://doi.org/10.1057/s41599-020-0495-3
Ricci, D., Colombo, G., Meunier, A., & Brilli, A. (2017). Designing Digital Methods to Monitor and Inform Urban Policy: The Case of Paris and its Urban Nature Initiative. International Conference on Public Policy (ICPP3). https://hal.archives-ouvertes.fr/hal-01903809
Rieder, B. (2015). YouTube Data Tools [Computer Software] (Version 1.11). https://tools.digitalmethods.net/netvizz/youtube/
Rieder, B. (2020). Engines of Order: A Mechanology of Algorithmic Techniques. Amsterdam University Press.
Rieder, B., & Röhle, T. (2018). Digital Methods: From Challenges to Bildung. In M. T. Schäfer & K. van Es (Eds.), The Datafied Society: Studying Culture through Data (pp. 109–124). Amsterdam University Press. https://doi.org/10.1515/9789048531011-010
Robinson, S. (2017, June 1). Exploring the Cloud Vision API. Medium. https://medium.com/@srobtweets/exploring-the-cloud-vision-api-1af9bcf080b8
Rogers, R. (2013). Digital Methods. MIT Press.
Rogers, R. (2019). Doing Digital Methods. SAGE.
Rose, G. (2016). Visual Methodologies (4th ed.). Open University.
Rubinstein, D., & Sluis, K. (2013). Concerning the Undecidability of the Digital Image. Photographies, 6(1), 151–158. https://doi.org/10.1080/17540763.2013.788848
Schwemmer, C., Knight, C., Bello-Pardo, E. D., Oklobdzija, S., Schoonvelde, M., & Lockhart, J. W. (2020). Diagnosing Gender Bias in Image Recognition Systems. Socius, 6, 2378023120967171. https://doi.org/10.1177/2378023120967171
Silva, T., Barciela, P., & Meirelles, P. (2018). Mapeando Imagens de Desinformação e Fake News Político-Eleitorais com Inteligência Artificial. 3o CONEC: Congresso Nacional de Estudos Comunicacionais Da PUC Minas Poços de Caldas - Convergência e Monitoramento, 413–427. https://www.researchgate.net/publication/329525177_Mapeando_Imagens_de_Desinformacao_e_Fake_News_Politico-Eleitorais_com_Inteligencia_Artificial
Silva, T., Mintz, A., Omena, J. J., Gobbo, B., Oliveira, T., Takamitsu, H. T., Pilipets, E., & Azhar, H. (2020). APIs de Visão Computacional: Investigando mediações algorítmicas a partir de estudo de bancos de imagens. Logos, 27(1), 25–54. https://doi.org/10.12957/logos.2020.51523
Steyerl, H. (2009). In Defense of the Poor Image. E-Flux Journal, 10. https://www.e-flux.com/journal/10/61362/in-defense-of-the-poor-image/
Sullivan, D. (2020, May 20). A Reintroduction to our Knowledge Graph and Knowledge Panels. Blog.Google. https://blog.google/products/search/about-knowledge-graph-and-knowledge-panels/
Szeliski, R. (2021). Computer Vision: Algorithms and Applications (2nd ed.). Springer.
Taibi, D., Rogers, R., Marenzi, I., Nejdl, W., Ahmad, Q. A. I., & Fulantelli, G. (2016). Search as Research Practices on the Web: The Sar-web Platform for Cross-language Engine Results Analysis. Proceedings of the 8th ACM Conference on Web Science, 367–369. https://doi.org/10.1145/2908131.2908201
Tumblr. (2018, December). Updates to Tumblr’s Community Guidelines [Tumblr]. Tumblr Support. https://support.tumblr.com/post/180758979032/updates-to-tumblrs-community-guidelines
Venturini, T., Jacomy, M., & Jensen, P. (2019). What Do We See When We Look at Networks. An Introduction to Visual Network Analysis and Force-Directed Layouts (SSRN Scholarly Paper ID 3378438). Social Science Research Network. https://doi.org/10.2139/ssrn.3378438
Venturini, T., Jacomy, M., & Pereira, D. (2015). Visual Network Analysis: The Example of the Rio+20 Online Debate. https://hal.archives-ouvertes.fr/hal-02305124
Xi, N., Ma, D., Liou, M., Steinert-Threlkeld, Z. C., Anastasopoulos, J., & Joo, J. (2020). Understanding the Political Ideology of Legislators from Social Media Images. Proceedings of the 14th International AAAI Conference on Web and Social Media, ICWSM 2020, 726–737. http://arxiv.org/abs/1907.09594