Self-compacting mortars with mineral additions: perlite and limestone filler
DOI:
https://doi.org/10.7764/RDLC.20.3.479Keywords:
mortars, self-compacting, perlite, limestone fillerAbstract
With the increasing infrastructure and the need for eco-sustainable alternatives, the concrete industry has motivated to look for supplementary cementitious materials especially those generated from waste. The advantages of self-compacting concrete (SCC) make it useful in the worldwide; therefore, it is essential to study additions that can be incorporated into it, to improve its properties. Limestone powder (LP) and local waste perlite fines (PF) from Salta (Argentina) are proposed as mineral addition in self-compacting mortars (SCM). PF has a high content of SiO2 and Al2O3 which can contribute to increasing the strength of the concrete due to the pozzolanic reaction. Physicochemical characterization of this waste is studied and the behavior of SCM mixtures with different proportions of LP and PF are also analyzed. Sets of specimens have been performed in order to test their rheological characteristics in the fresh state and their mechanical resistance in the hardened state. The results indicate that the combination of LP and PF has a beneficial influence on the fresh state, granting an adequate fluidity and viscosity of the mixture; on the hardened state, compressive strengths similar to the standard are achieved at 90 days in mortars with up to 20% cement replacement by additions.
Downloads
References
Adekunlea, S., Ahmada, S., Maslehuddinb, M., & Al-Gahtani, H. J. (2015). Properties of SCC prepared using natural pozzolana and industrial wastes as mineral fillers. Cement and Concrete Composites, Volume 62, 125-133.
ASTM C1611 / C1611M. Standard Test Method for Slump Flow of Self-Consolidating Concrete. (2018). West Conshohocken, PA: ASTM.
ASTM C494/C494M. Standard Specification for Chemical Admixtures for Concrete. (2013). Philadelphia, United States: ASTM.
Berge, B. (2009). The Ecology of Building Materials. Oxford: Architectural Press, ELSEVIER.
Bonavetti, V. (1998). Limestone filler cements: Interaction mechanism and its influence on mechanical properties. National University of the Center of Buenos Aires: PhD thesis.
Bonavetti, V. L., Rahhal, V. F., & Irassar, E. F. (2001). Studies on the carboaluminate formation in limestone filler blended cements. Cem Conc Res 31 (6), 853-9.
Bosiljkov, V. (2003). SCC mixes with poorly graded aggregate and high volume of limestone filler. CemConcr Res 33(9), 1279-1286.
Cobirzan, N., Balog, A.-A., & Mosonyi, E. (2015). Investigation of the natural pozzolans for usage in cement industry. Procedia Technol 19, 506–511.
De Bellie, N., Soutsos, M., & Gruyaert, E. (2018). Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials: State-of-the-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4.
Demirboga, R., Örüng, I., & Gül, R. (2001). Effects of expanded perlite aggregate and mineral admixtures on the compressive strength of low-density concretes. Cem Concr Res 31(11), 1627–1632.
EFNARC. Specification and Guidelines for Self-Compacting Concrete. (2002). Surrey, UK: Association House.
Erdem, E. (1997). Effect of various additives on the hydration of perlite gypsum plaster and perlite-portland cement pastes. Turk J Chem 21(3), 209-214.
Erdem, T., Meral, C., Tokyay, M., & Erdogan, T. (2007). Use of perlite as a pozzolanic addition in producing blended cements. Cement & Concrete Com-posites 29, 13-21.
Ghafoori, N., Sharbaf, M., & Najimi, M. (2016). Properties of self-consolidating concrete containing natural Pozzolan. II International Conference on Concrete Sustainability ICCS16. Madrid, España.
Ghasemi, M., Rasekh, H., Berenjian, J., & AzariJafari, H. (2019). Dealing with workability loss challenge in SCC mixtures incorporating natural pozzolans: A study of natural zeolite and pumice. Construction and Building Materials 222, 424-436.
Gonzalvez, M. R., Herrmann, C. J., & Zappettini, E. O. (2004). Minerales Industriales de la República Argentina. Instituto de Geología y Recursos Minera-les, Servicio Geológico Minero Argentino, Anales N°39, (pp. 55-56). Buenos Aires.
Gupta, S., Mohapatra, B. N., & Bansal, M. (2020). A review on development of Portland limestone cement: A step towards low carbon economy for Indian cement industry. Current Research in Green and Sustainable Chemistry 3.
Hartshorn, S. A., Sharp, J. H., & Swamy, R. N. (1999). Thaumasite formation in portland-limestone cement pastes. Cem Concr Res 29(8), 1331-40.
Hartshorn, S. A., Swamy, R. N., & Sharp, J. H. (2001). Engineering properties and structural implications of portland limestone cement mortar exposed to magnesium sulphate attack. Adv Cem Res 13(1), 31-46.
IRAM 1505. Agregados. Análisis granulométrico. (2005). Buenos Aires: IRAM.
IRAM 1622. Cemento Pórtland. Determinación de resistencias mecánicas. (2002). Buenos Aires.: IRAM.
IRAM 1627. Agregados. Granulometría de los agregados para hormigones. (1997). Buenos Aires: IRAM.
IRAM 1663. Hormigón de cemento. Aditivos químicos. (2002). Buenos Aires: IRAM.
IRAM 50000. Cemento. Cemento para uso general. Composición, características, evaluación de la conformidad y condiciones de recepción. (2014). Buenos Aires: IRAM.
Karein, S. M., Joshaghani, A., Ramezanianpour, A. A., Isapour, S., & Karakouzian, M. (2018). Effects of the mechanical milling method on transport properties of self-compacting concrete containing perlite powder as a supplementary cementitious material. Construction and Building Materials 172, 677–684.
Liu, S., & Yan, P. (2010). Effect of limestone powder on microstructure of concrete. J Wuhan UnivTechnol 25(2), 328-331.
Mehta, P. K. (1998). Role of pozzolanic and cementitious materials in sustainable development of the concrete industry. Proceedings of the 6th Interna-tional Conference on the Use of Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, ACI SP-178 (pp. 1-25). Farmington Hills, MI: V.M. Malhotra (Ed.).
Menadi, B., & Kenai, S. (2018). Influence of natural pozzolana content on self-compacting concrete durability properties. 14th International Conference on Concrete Engineering and Technology - IOP Conf. Series: Materials Science and Engineering 431.
Nicoara, A. I., Stoica, A. E., Vrabec, M., Šmuc Rogan, N., Sturm, S., Ow-Yang, C., . . . Vasile, B. S. (2020). End-of-Life Materials Used as Supplementary Cementitious Materials in the Concrete Industry. Materials (Basel, Switzerland), 13(8), 1954.
Nidheesh, P. V., & Suresh Kumar, M. (2019). An overview of environmental sustainability in cement and steel production. Journal of Clenner Production 231, 856-871.
Raggiotti, B. B., Positieri, M. J., Locati, F., Murra, J., & Marfil, S. (2015). Zeolite, Study of Aptitude as a Natural Pozzolan Applied to Structural. Revista de la Construcción 14(2), 14-20.
Shirule, P. A., Rahman, A., & Gupta, R. D. (2012). Partial replacement of cement with marble dust powder. International Journal of Advanced Engineering Research and Studies - Vol. I- Issue III, 175-177.
Soroka, I., & Stern, N. (1977). The effect of fillers on strength of cement mortars. Cem Conc Res 7(4), 449-56.
Turanli, L., Uzal, B., & Bektas, F. (2005). Effect of large amounts of natural pozzolan addition on properties of blended cements. Cement and Concrete Research 35, 1106-1111.
Urhan, S. (1987). Alkali silica and pozzolanic reactions in concrete. Part 2: Observations on expanded perlite aggregate concretes. Cem Concr Res 17(3), 465–77.
Uysal, M., & Yilmaz, K. (2011). Effect of mineral admixtures on properties of self-compacting concrete. Cement & Concrete Composites 33, 771–776.
Yu, L.-H., Ou, H., & Lee, L.-L. (2003). Investigation on pozzolanic effect of perlite powder in concrete. Cem Concr Res 33(1), 73-76.