Investigation of properties of mortar containing pyrogenic silica-added supplementary cementitious materials
DOI:
https://doi.org/10.7764/RDLC.21.1.118Keywords:
mortar, cure, pozzolan, supplementary cementitious materials, pyrogenic silicaAbstract
This study investigated the effect of supplementary cementitious materials (SCMs) with pozzolanic nature fly-ash (FA), silica fume (SF), and ground granulated blast furnace slag (GGBFS) on the properties of cement mortar with pyrogenic silica addition. First, standard reference (SR) samples were prepared using CEM I 42.5 R-type cement. Pyrogenic silica was added to cement (0.5% by weight) to prepare another group of reference (PR) mortar samples. Cement in PR mortars was replaced with FA, SF, and GGBFS up to 10, 20, and 30%. The mortar samples were placed in 40x40x160 mm metal molds using a vibrating table. The following day the samples were removed from the molds and water cured for 7, 28, and 90 days. The results showed that increases in curing times helped improve the mechanical properties of the mortars. Moreover, the physical properties of PR mortars were affected more positively than the SR mortars. SF-substituted mortars had highest compressive strength, followed by GGBFS- and FA- substituted mortars. In conclusion, pyrogenic silica contributed to some extent to early strength, followed by a decrease.
Downloads
References
Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36(3), 327–363. https://doi.org/10.1016/j.pecs.2009.11.003
Aldea, C. M., Young, F., Wang, K., & Shah, S. P. (2000). Effects of curing conditions on properties of concrete using slag replacement. Cement and Concrete Research, 30(3), 465–472. https://doi.org/10.1016/S0008-8846(00)00200-3
Barthel, H., Rösch, L., & Weis, J. (1996). Fumed silica - production, properties, and applications. In Organosilicon Chemistry II: From Molecules to Materials (pp. 761–778). Weinheim, Germany: Wiley-VCH Verlag GmbH. https://doi.org/10.1002/9783527619894.ch91
Binici, H., Kaplan, H., Temiz, H., & Görür, E. B. (2008). Some durability properties of ground blast furnace slag and ground basaltic pumice concretes. Journal of Engineering Sciences, 14(3), 309–317. Retrieved from http://dergipark.gov.tr/download/article-file/190984
Bost, P., Regnier, M., & Horgnies, M. (2016). Comparison of the accelerating effect of various additions on the early hydration of Portland cement. Construction and Building Materials, 113, 290–296. https://doi.org/10.1016/j.conbuildmat.2016.03.052
Bu, Y., Hou, X., Wang, C., & Du, J. (2018). Effect of colloidal nanosilica on early-age compressive strength of oil well cement stone at low temperature. Construction and Building Materials, 171, 690–696. https://doi.org/10.1016/j.conbuildmat.2018.03.220
Cho, Y. K., Jung, S. H., & Choi, Y. C. (2019). Effects of chemical composition of fly ash on compressive strength of fly ash cement mortar. Construction and Building Materials, 204, 255–264. https://doi.org/10.1016/j.conbuildmat.2019.01.208
Damtoft, J. S., Lukasik, J., Herfort, D., Sorrentino, D., & Gartner, E. M. (2008). Sustainable development and climate change initiatives. Cement and Concrete Research, 38(2), 115–127. https://doi.org/10.1016/j.cemconres.2007.09.008
Deja, J., Uliasz-Bochenczyk, A., & Mokrzycki, E. (2010). CO2 emissions from Polish cement industry. International Journal of Greenhouse Gas Control, 4(4), 583–588. https://doi.org/10.1016/j.ijggc.2010.02.002
Díaz, J. E., Izquierdo, S. R., Mejía De Gutiérrez, R., & Gordillo, M. (2013). Ternary mixture of portland cement, blast furnace slag and limestone: mechanical strength and durability. Revista de La Construcción. Journal of Construction, 12(3), 55–62.
Dorum, A., Koçak, Y., Yılmaz, B., & Uçar, A. (2009). The effects of blast furnace slag on the cement surface properties and hydration. Journal of Science and Technology of Dumlupinar University, 19, 47–58.
Elmrabet, R., El Harfi, A., & El Youbi, M. S. (2019). Study of properties of fly ash cements. Materials Today: Proceedings, 13, 850–856. Elsevier Ltd. https://doi.org/10.1016/j.matpr.2019.04.048
Erdoğan, T. Y. (2003). Beton. Metu Press - TURKEY.
Gao, D., Meng, Y., Yang, L., Tang, J., & Lv, M. (2019). Effect of ground granulated blast furnace slag on the properties of calcium sulfoaluminate cement. Construction and Building Materials, 227, 116665. https://doi.org/10.1016/j.conbuildmat.2019.08.046
Giergiczny, Z. (2019). Fly ash and slag. Cement and Concrete Research, 124, 105826. https://doi.org/10.1016/j.cemconres.2019.105826
Givi, A. N., Rashid, S. A., Aziz, F. N. A., & Salleh, M. A. M. (2011). Investigations on the development of the permeability properties of binary blended concrete with nano-SiO2 particles. Journal of Composite Materials, 45(19), 1931–1938. https://doi.org/10.1177/0021998310389091
Gümüş, A. (2016). Effect of thermal curing process on geopolymer concrete properties. Afyon Kocatepe University, M.Sc. Thesis, Institute of Science and Technology, Department of Civil Engineering, Afyonkarahisar- TURKEY.
Ha, S. W., Weitzmann, M. N., & Beck, G. R. (2012). Dental and skeletal applications of silica-based nanomaterials. In Nanobiomaterials in Clinical Dentistry (pp. 69–91). Elsevier Inc. https://doi.org/10.1016/B978-1-4557-3127-5.00004-0
Hatungimana, D., Taşköprü, C., İçhedef, M., Saç, M. M., & Yazıcı, Ş. (2019). Compressive strength, water absorption, water sorptivity and surface radon exhalation rate of silica fume and fly ash based mortar. Journal of Building Engineering, 23, 369–376. https://doi.org/10.1016/j.jobe.2019.01.011
Kallel, T., Kallel, A., & Samet, B. (2016). Durability of mortars made with sand washing waste. Construction and Building Materials, 122, 728–735. https://doi.org/10.1016/j.conbuildmat.2016.06.086
Khavryuchenko, V. D., Khavryuchenko, O. V., & Lisnyak, V. V. (2011). Formation of pyrogenic silica: Spectroscopic and quantum chemical insight. Critical Reviews in Solid State and Materials Sciences, 36(2), 47–65. https://doi.org/10.1080/10408436.2011.572741
Kong, D., Du, X., Wei, S., Zhang, H., Yang, Y., & Shah, S. P. (2012). Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials. Construction and Building Materials, 37, 707–715. https://doi.org/10.1016/j.conbuildmat.2012.08.006
Kong, D., Su, Y., Du, X., Yang, Y., Wei, S., & Shah, S. P. (2013). Influence of nano-silica agglomeration on fresh properties of cement pastes. Construction and Building Materials, 43, 557–562. https://doi.org/10.1016/j.conbuildmat.2013.02.066
Li, Z., Wang, Y., & Wu, Y. (2020). Nano fumed silica particles on cement properties. IOP Conference Series: Earth and Environmental Science, 525, 012149. https://doi.org/10.1088/1755-1315/525/1/012149
Liu, H., Jin, J., Yu, Y., Liu, H., Liu, S., Shen, J., … Ji, H. (2020). Influence of halloysite nanotube on hydration products and mechanical properties of oil well cement slurries with nano-silica. Construction and Building Materials, 247, 118545. https://doi.org/10.1016/j.conbuildmat.2020.118545
Liu, J., Qin, Q., & Yu, Q. (2020). The effect of size distribution of slag particles obtained in dry granulation on blast furnace slag cement strength. Powder Technology, 362, 32–36. https://doi.org/10.1016/j.powtec.2019.11.115
Liu, M., Zhou, Z., Zhang, X., Yang, X., & Cheng, X. (2016). The synergistic effect of nano-silica with blast furnace slag in cement based materials. Construction and Building Materials, 126, 624–631. https://doi.org/10.1016/j.conbuildmat.2016.09.078
Lothenbach, B., Scrivener, K., & Hooton, R. D. (2011). Supplementary cementitious materials. Cement and Concrete Research, 41(12), 1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001
Ma, C., He, J., Qin, T., Long, G., Du, Y., & Xie, Y. (2020). A comparison of the influence of micro- and nano-silica on hydration kinetics of Portland cement under different temperatures. Construction and Building Materials, 248, 118670. https://doi.org/10.1016/j.conbuildmat.2020.118670
Mironyuk, I., Tatarchuk, T., Paliychuk, N., Heviuk, I., Horpynko, A., Yarema, O., & Mykytyn, I. (2019). Effect of surface-modified fly ash on compressive strength of cement mortar. Materials Today: Proceedings, 35, 534–537. https://doi.org/10.1016/j.matpr.2019.10.016
Šavija, B., Zhang, H., & Schlangen, E. (2020). Micromechanical testing and modelling of blast furnace slag cement pastes. Construction and Building Materials, 239, 117841. https://doi.org/10.1016/j.conbuildmat.2019.117841
Sekhar, D. C., & Nayak, S. (2018). Utilization of granulated blast furnace slag and cement in the manufacture of compressed stabilized earth blocks. Construction and Building Materials, 166, 531–536. https://doi.org/10.1016/j.conbuildmat.2018.01.125
Shaikh, F. U. A., Supit, S. W. M., & Sarker, P. K. (2014). A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes. Materials and Design, 60, 433–442. https://doi.org/10.1016/j.matdes.2014.04.025
Siang Ng, D., Paul, S. C., Anggraini, V., Kong, S. Y., Qureshi, T. S., Rodriguez, C. R., … Šavija, B. (2020). Influence of SiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortars. Construction and Building Materials, 258, 119627. https://doi.org/10.1016/j.conbuildmat.2020.119627
Skibsted, J., & Snellings, R. (2019). Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cement and Concrete Research, 124, 105799. https://doi.org/10.1016/j.cemconres.2019.105799
Tobón, J. I., Mendoza Reales, O., Restrepo, O. J., Borrachero, M. V., & Payá, J. (2018). Effect of pyrogenic silica and nanosilica on portland cement matrices. Journal of Materials in Civil Engineering, 30(10), 04018266. https://doi.org/10.1061/(asce)mt.1943-5533.0002482
TS EN 196-1. (2016). Methods of testing cement - Part 1: Determination of strength. Ankara-TURKEY.
TS EN 771-1. (2015). Specification for masonry units - Part 1: Clay masonry units. Ankara-TURKEY.
TS EN 772-4. (2000). Methods of test for masonry units - Part 4: Determination of real and bulk density and of total and open porosity for natural stone masonry units. Ankara-TURKEY.
Veranth, J. M., Ghandehari, H., & Grainger, D. W. (2010). Nanoparticles in the Lung. In Comprehensive Toxicology, Second Edition (Vol. 8, pp. 453–475). Elsevier Inc. https://doi.org/10.1016/B978-0-08-046884-6.00928-3
Wang, J., Cheng, Y., Yuan, L., Xu, D., Du, P., Hou, P., … Wang, Y. (2020). Effect of nano-silica on chemical and volume shrinkage of cement-based composites. Construction and Building Materials, 247, 118529. https://doi.org/10.1016/j.conbuildmat.2020.118529
Wang, T., Ishida, T., Gu, R., & Luan, Y. (2020). Experimental investigation of pozzolanic reaction and curing temperature-dependence of low-calcium fly ash in cement system and Ca-Si-Al element distribution of fly ash-blended cement paste. Construction and Building Materials, 267, 121012. https://doi.org/10.1016/j.conbuildmat.2020.121012
Yeğinobalı, A. (2011). Silis dumanı ve çimento ile betonda kullanımı (7th ed.). Ankara: TÇMB/AR-GE Enstitüsü, TURKEY.
Yingliang, Z., Jingping, Q., Zhengyu, M. A., Zhenbang, G., & Hui, L. (2020). Effect of superfine blast furnace slags on the binary cement containing high-volume fly ash. Powder Technology, 375, 539–548. https://doi.org/10.1016/j.powtec.2020.07.094
Zhang, M. H., Islam, J., & Peethamparan, S. (2012). Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag. Cement and Concrete Composites, 34(5), 650–662. https://doi.org/10.1016/j.cemconcomp.2012.02.005
Zhu, N., Jin, F., Kong, X., Xu, Y., Zhou, J., Wang, B., & Wu, H. (2018). Interface and anti-corrosion properties of sea-sand concrete with fumed silica. Construction and Building Materials, 188, 1085–1091. https://doi.org/10.1016/j.conbuildmat.2018.08.040
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Gökhan Görhan, Ahmet Mücahit Bozkurt
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.