Flexural behavior of concrete beams reinforced with glass fiber reinforced polymer and steel bars
DOI:
https://doi.org/10.7764/RDLC.21.3.506Keywords:
Concrete beams, fiber reinforced polymer, flexural strength, deflection.Abstract
In this study, a comparative experimental analysis is performed between steel-reinforced concrete beams, which are dimensioned based on NBR 6118 (2014), and beams reinforced with glass fiber-reinforced polymer (GFRP) rebar, which are dimensioned based on ACI 440.1R (2015) after being subjected to a four-point bending test. The beams are dimensioned to resist the same force and to satisfy the service limit state (SLS). Results show that the two groups of beams exhibit similar vertical displacement behaviors until the SLS-DEF, whereas the GFRP beams exhibit larger deflections. At the ultimate load, the beams with fiberglass bars indicate a higher resistance by approximately 64% compared with those with metal bars.
Downloads
References
Abdelkarim, O. I., Ahmed, E. A., Mohamed, H. M., & Benmokrane, B. (2019). Flexural strength and serviceability evaluation of concrete beams reinforced with deformed GFRP bars. Engineering Structures, 186, 282–296. https://doi.org/10.1016/j.engstruct.2019.02.024
ABNT. (2003). NBR NM 248: Agregados - Determinação da composição granulométrica. Associação brasileira de normas técnicas.
ABNT. (2014). NBR 6118: Projeto de estruturas de concreto – Procedimento. Associação brasileira de normas técnicas. Rio de Janeiro, Brazil.
ABNT. (2015). NBR 5738: Concreto - Procedimento para moldagem e cura de corpos de prova. Associação brasileira de normas técnicas. Rio de Janeiro, Brazil.
ABNT. (2018). NBR 5739: Concreto – Ensaio de compressão de corpos-de-prova cilíndricos. Associação brasileira de normas técnicas. Rio de Janeiro, Brazil.
ACI (American Concrete Institute). (2008). Specification for Construction with Fiber-Reinforced Polymer Reinforcing Bars. ACI 440.5-08, Farmington Hills, MI.
ACI (American Concrete Institute). (2015). Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars. ACI 440.1R-15, Farmington Hills, MI, 88.
Ascione, L., Mancusi, G., & Spadea, S. (2010). Flexural behaviour of concrete beams reinforced with GFRP bars. Strain, 46(5), 460–469. https://doi.org/10.1111/j.1475-1305.2009.00662.x
ASTM (American Society for testing and materials). (2018). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM C78/C78M - 18, Pensilvânia.
Confrere, A., Michel, L., Ferrier, E., & Chanvillard, G. (2016). Experimental behaviour and deflection of low-strength concrete beams reinforced with FRP bars. Structural Concrete, 17(5), 858–874. https://doi.org/10.1002/suco.201500046
CSA S806. (2012). Design and construction of building structures with fibre-reinforced polymers. Canadian Standards Association (CSA) Standard S806-12.
El-Nemr, A., Ahmed, E. A., El-Safty, A., & Benmokrane, B. (2018). Evaluation of the flexural strength and serviceability of concrete beams reinforced with different types of GFRP bars. Engineering Structures, 173, 606–619. https://doi.org/10.1016/j.engstruct.2018.06.089
Fava, G., Carvelli, V., & Pisani, M. A. (2016). Remarks on bond of GFRP rebars and concrete. Composites Part B: Engineering, 93, 210–220. https://doi.org/10.1016/j.compositesb.2016.03.012
Filho, R. C. C. and J. R. F. (2014). Cálculo e Detalhamento de Estruturas Usuais de Concreto Armado: segundo a NBR 6118:2014. (4), São Carlos.
I. S. Hoffman and E. G. P. Antunes. (2017). Análise experimental de vigas mistas de concreto armado e perfis de gfrp utilizados como substitutos parciais das armaduras transversais. T.C.C. Dept. Civil. Eng., Universidade do Extremo Sul Catarinense, Criciuma, 25f.
Jabbar, S. A. A., & Farid, S. B. H. (2018). Replacement of steel rebars by GFRP rebars in the concrete structures. Karbala International Journal of Modern Science, 4(2), 216–227. https://doi.org/10.1016/j.kijoms.2018.02.002
Ramachandra Murthy, A., Pukazhendhi, D. M., Vishnuvardhan, S., Saravanan, M., & Gandhi, P. (2020). Performance of concrete beams reinforced with GFRP bars under monotonic loading. Structures, 27, 1274–1288. https://doi.org/10.1016/j.istruc.2020.07.020
Saleh, Z., Goldston, M., Remennikov, A. M., & Sheikh, M. N. (2019). Flexural design of GFRP bar reinforced concrete beams: An appraisal of code recommendations. Journal of Building Engineering, 25. https://doi.org/10.1016/j.jobe.2019.100794
Sheikh, S. A., & Kharal, Z. (2018). Replacement of steel with GFRP for sustainable reinforced concrete. Construction and Building Materials, 160, 767–774. https://doi.org/10.1016/j.conbuildmat.2017.12.141
Tavares, D. H., & Giongo, J. S. (2009). Análise teórica e experimental de vigas de concreto armadas com barras não metálicas de GFRP. Cadernos de Engenharia de Estruturas, 11(52), 143–156.
Umair-Saleem, M., Khurram, N., Nasir-Amin, M., & Khan, K. (2018). Finite element simulation of RC beams under flexure strengthened with different layouts of externally bonded fiber reinforced polymer (FRP) sheets. Revista de La Construcción, 17(3), 383–400. https://doi.org/10.7764/rdlc.17.3.383
Yoo, D. Y., Banthia, N., & Yoon, Y. S. (2016a). Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars. Engineering Structures, 111, 246–262. https://doi.org/10.1016/j.engstruct.2015.12.003
Yoo, D. Y., Banthia, N., & Yoon, Y. S. (2016b). Predicting service deflection of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP bars. Composites Part B: Engineering, 99, 381–397. https://doi.org/10.1016/j.compositesb.2016.06.013
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Cristian Espíndola Farias, Sarah Lodeti Pessi, Augusto Wanderlind, Jorge Henrique Piva, Elaine Guglielmi Pavei Antunes
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.