Axial compressive behavior of short tie-columns with strapping spiral ties

Authors

  • Milena Mesa-Lavista Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Nuevo León (Mexico)
  • José Álvarez-Pérez Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Nuevo León (Mexico)
  • Jorge H Chávez-Gómez Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Nuevo León (Mexico)
  • Gerardo Fajardo San Miguel Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Nuevo León (Mexico)
  • Diego Cavazos de Lira Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Nuevo León (Mexico)
  • Fabián Ruvalcaba-Ayala Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Nuevo León (Mexico)

DOI:

https://doi.org/10.7764/RDLC.21.3.657

Keywords:

Spiral ties, strapping ties, tie-columns, experimental test, fracture energy

Abstract

Spiral ties with rectangular cross sections have been developed as a new technology in construction, reducing the workforce in the reinforcement production series, because the worker does not have to place the tie reinforcement for the columns on the construction site. In this paper, a new type of tie was evaluated in short tie-columns subjected to axial compression to be applied in confined masonry. A comparison was made in this paper among spiral ties, with circular and rectangular cross sections, and traditional closed ties. The main aim of this research is to prove that these rectangular cross-section spiral ties can be used in tie columns for confined masonry structures. Twenty-one specimens were tested to investigate their structural behavior. As a part of the results, maximum loads, strains, load-displacement curves, and stress-strain relationships, were obtained based on testing standards, for both specimens and component materials. In addition, the fracture energy in compression and the ductility index were assessed. These results demonstrate that spiral ties with rectangular cross sections have an efficient structural response compared to traditional and circular spiral ties.

Downloads

Download data is not yet available.

References

Aceros-Titán-Company. (2016). Manufacture and Distribution of steel products for the Metal-Mechanical and Construction Industries. doi:https://www.acerostitan.com/certifications

ACI-318. (2019). Building code requirements for structural concrete: (ACI 318-14); and commentary (ACI 318R-14). In. Farmington Hills, MI: American Concrete Institute.

ACI-530. (2013). Building Code Requirements and Specification for Masonry Structures and Companion Commentaries. In TMS 602-13/4CI 530.1-13/ASCE 6-13 (pp. S-1-S-85).

ASTM-A370. Standard Test Methods and Definitions for Mechanical Testing of Steel Products. In.

ASTM-C39/C39M-18. Test Method for Compressive Strength of Cylindrical Concrete Specimens. In.

ASTM-C617/C617M-15. Standard Practice for Capping Cylindrical Concrete Specimens. In.

ASTM-E8/E8M-09. Standard test methods for tension testing of metallic materials. In A. A. State (Ed.).

Cai, G., Su, Q., Tsavdaridis, K. D., & Degée, H. (2018). Simplified Density Indexes of Walls and Tie-Columns for Confined Masonry Buildings in Seismic Zones. Journal of Earthquake Engineering, 1-23. doi:https://doi.org/10.1080/13632469.2018.1453396

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geosci. Model Dev., 7(3), 1247-1250. doi:https://doi.org/10.5194/gmd-7-1247-2014

Du, M., Jin, L., Du, X., & Li, D. (2017). Size effect tests of stocky reinforced concrete columns confined by stirrups. Structural Concrete, 18(3), 454-465. doi:https://doi.org/10.1002/suco.201600074

Gardner, L., & Yun, X. (2018). Description of stress-strain curves for cold-formed steels. Construction and Building Materials, 189, 527-538. doi:https://doi.org/10.1016/j.conbuildmat.2018.08.195

Grgić, N., Radnić, J., Matešan, D., & Banović, I. (2017). Stirrups effect on the behavior of concrete columns during an earthquake. Materialwissenschaft und Werkstofftechnik, 48(5), 406-419. doi:https://doi.org/10.1002/mawe.201700014

Gribniak, V., Rimkus, A., Torres, L., & Jakstaite, R. (2017). Deformation analysis of reinforced concrete ties: Representative geometry. Structural Concrete, 18(4), 634-647. doi:https://doi.org/10.1002/suco.201600105

Hong, K.-N., Han, S.-H., & Yi, S.-T. (2006). High-strength concrete columns confined by low-volumetric-ratio lateral ties. Engineering Structures, 28(9), 1346-1353. doi:https://doi.org/10.1016/j.engstruct.2006.01.010

JSCE. (2007). Standard specifications for concrete structures. In Desing (Vol. 15, pp. 503). Japan society of civil engineers Subcommittee on english version of standard specifications for concrete structures.

Li, W., Sun, L., Zhao, J., Lu, P., & Yang, F. (2018). Seismic performance of reinforced concrete columns confined with two layers of stirrups. The Structural Design of Tall and Special Buildings, 27(12), e1484. doi:https://doi.org/10.1002/tal.1484

Lizárraga, J. F., & Pérez-Gavilán, J. J. (2017). Parameter estimation for nonlinear analysis of multi-perforated concrete masonry walls. Construction and Building Materials, 141, 353-365. doi:https://doi.org/10.1016/j.conbuildmat.2017.03.008

Marques, R., & Lourenço, P. B. (2019). Structural behaviour and design rules of confined masonry walls: Review and proposals. Construction and Building Materials, 217, 137-155. doi:https://doi.org/10.1016/j.conbuildmat.2019.04.266

NTCM. (2017). Normas técnicas complementarias para el diseño y construcción de estructuras de mampostería. In (pp. 88).

Oller, S. (2001). Mechanical fracture: a global approach (in Spanish). Barcelona: Centro Internacional de Métodos Numéricos en Ingeniería, .

Salah-Eldin, A., Mohamed, H. M., & Benmokrane, B. (2019). Structural performance of high-strength-concrete columns reinforced with GFRP bars and ties subjected to eccentric loads. Engineering Structures, 185, 286-300. doi:https://doi.org/10.1016/j.engstruct.2019.01.143

Sun, L., & Li, W. (2019). Cyclic behavior of reinforced concrete columns confined with two layers of stirrups. Structural Concrete, 0(0). doi:https://doi.org/10.1002/suco.201800229

Tan, R., Eileraas, K., Opkvitne, O., Žirgulis, G., Hendriks, M. A. N., Geiker, M., . . . Kanstad, T. (2018). Experimental and theoretical investigation of crack width calculation methods for RC ties. Structural Concrete, 19(5), 1436-1447. doi:https://doi.org/10.1002/suco.201700237

Yun, X., & Gardner, L. (2017). Stress-strain curves for hot-rolled steels. Journal of Constructional Steel Research, 133, 36-46. doi:https://doi.org/10.1016/j.jcsr.2017.01.024

Zhao, Y., & Wang, F. (2015). Experimental studies on behavior of fully grouted reinforced-concrete masonry shear walls. Earthquake Engineering and Engineering Vibration, 14(4), 743-757. doi:10.1007/s11803-015-0030-5

Downloads

Published

2022-12-29

How to Cite

Mesa-Lavista, M. ., Álvarez-Pérez, J., Chávez-Gómez, J. H., Fajardo San Miguel, G., Cavazos de Lira, D., & Ruvalcaba-Ayala, F. (2022). Axial compressive behavior of short tie-columns with strapping spiral ties. Revista De La Construcción. Journal of Construction, 21(3), 657–668. https://doi.org/10.7764/RDLC.21.3.657