Ultimate capacity prediction of RC and SFRC beams with low shear span-depth ratio using NLFEA and inverse analysis
DOI:
https://doi.org/10.7764/RDLC.21.3.717Keywords:
Beams, steel fiber, shear, finite elements.Abstract
In this study, the capacity and ultimate behavior of Reinforced Concrete (RC) and Steel Fiber Reinforced Concrete (SFRC) beams are evaluated. Nonlinear Finite Element Analysis (NLFEA) and the inverse analysis technique were used to model its structural response using the ATENA finite element software. The smeared crack approach, the crack band model, and advanced constitutive models were used to reproduce concrete fracture. The analyzed beams were subjected to rupture in a four-point bending test setup. The relationship between the shear span and the depth of the beams was 1.5. Four scenarios were analyzed, RC beams with and without stirrups, and SFRC beams without stirrups with volumes of 0.57% and 0.76%. The results obtained in the modeling are discussed in terms of the ability of the models to numerically reproduce the relationships: load versus displacement, load versus strain, crack patterns, and failure modes. The analysis techniques allowed to reproduce the experimental response of the beams with good agreement. They show great potential to solve structural engineering problems.
Downloads
References
ABNT-Brazilian National Technical Standards Association. (2007). NBR 5739: Concrete-Compression test of cylindric specimens-Method of test.
ABNT-Brazilian National Technical Standards Association. (2008). NBR 8522: Concrete-Determination of the elasticity modulus by compression.
ABNT-Brazilian National Technical Standards Association. (2011). NBR 7222: Concrete and mortar-Determination of the tension strength by diametrical compression of cylindrical test specimens.
ACI 318M-19. (2019). Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, ACI Committee 318, Farm-ington Hills, MI.
ASTM A-370. (2012). Standard Test Methods and Definitions for Mechanical Testing of Steel Products, American Society for Testing Materials, ASTM International, West Conshohocken, PA.
ASTM E8/E8M-16a. (2016). Standard Test Methods for Tension Testing of Metallic Materials, American Society for Testing Materials. ASTM Internation-al, West Conshohocken, PA.
Barros, J. A., & Figueiras, J. A. (1999). Flexural behavior of SFRC: testing and modeling. Journal of materials in civil engineering, 11(4), 331-339.
Barros, J., Sanz, B., Kabele, P., Yu, R. C., Meschke, G., Planas, J., Cunha, V., Caggiano, A., Ozyurt, N., Gouveia, V., van den Bos, A., Poveda, E., Gal, E., Cervenka, J., Neu, G. E., Rossi, P., Dias-da-Costa, D., Juhasz, P. K., Cendon, D., … Valente, T. (2021). Blind competition on the numerical simu-lation of steel-fiber-reinforced concrete beams failing in shear. Structural Concrete, 22(2), 939–967. https://doi.org/10.1002/suco.202000345.
Banthia, N., & Trottier, J. F. (1994). Concrete reinforced with deformed steel fibers, part I: bond-slip mechanisms. Materials Journal, 91(5), 435-446.
Bažant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Matériaux et construction, 16(3), 155-177.
Benedetty, C.A. (2018). Experimental and numerical analysis of the behavior of reinforced concrete beams with steel fibers (M.Sc. Thesis, University of Campinas, Campinas, Brazil). [in Portuguese].
Cattaneo, S., & Rosati, G. (1999). Effect of different boundary conditions in direct tensile tests: experimental results. Magazine of Concrete Research, 51(5), 365-374.
Cugat, V., Cavalaro, S. H. P., Bairán, J. M., & de la Fuente, A. (2020). Safety format for the flexural design of tunnel fibre reinforced concrete precast segmental linings. Tunnelling and Underground Space Technology, 103. https://doi.org/10.1016/j.tust.2020.103500.
Červenka, J., & Papanikolaou, V. K. (2008). Three dimensional combined fracture-plastic material model for concrete. International Journal of Plasticity, 24(12), 2192–2220. https://doi.org/10.1016/j.ijplas.2008.01.004.
Červenka, V., Jendele, L., & Červenka, J. (2021). ATENA Program Documentation–Part 1. Cervenka Consulting sro.
de Montaignac, R., Massicotte, B., Charron, J. P., & Nour, A. (2012). Design of SFRC structural elements: Post-cracking tensile strength measurement. In Materials and Structures/Materiaux et Constructions (Vol. 45, Issue 4, pp. 609–622). https://doi.org/10.1617/s11527-011-9784-z.
de Oliveira e Sousa, J. L. A., & Gettu, R. (2006). Determining the Tensile Stress-Crack Opening Curve of Concrete by Inverse Analisis. Journal Of Engi-neering Mechanics, 132(2), 141–148. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:2(141).
de Souza, R. A., & Breña, S. F. (2020). Simplified nonlinear analysis of reinforced concrete coupling beams subjected to cyclic loading. Revista de La Construccion, 19(3), 224–232. https://doi.org/10.7764/RDLC.19.3.224.
Di Prisco, M., & Plizzari, G. (2004). Precast SFRC elements: From material properties to structural applications. In 6th RILEM symposium on fibre-reinforced concretes FRC-BEFIB 2004, Varenna, Italy, september 20-22, 2004 (pp. 81-100). RILEM Publication sarl.
Dupont, D., & Vandewalle, L. (2002). Recommendations for Testing of SFRC: Report of Subtask 7.1: Final Report. Test and Design Methods for Steel for Steel Fibre Reinforced Concrete, Brite Euram BRPR-CT98-0813 Project No: BE, 97-4163.
Sanabria Díaz, R. A., Sarmiento Nova, S. J., Teixeira da Silva, M. C. A., Mouta Trautwein, L., & de Almeida, L. C. (2020). Reliability analysis of shear strength of reinforced concrete deep beams using NLFEA. Engineering Structures, 203. https://doi.org/10.1016/j.engstruct.2019.
FIB. (2010). fib Model Code 2010. Federation Internationale du Beton, Bulletin 65/66, Lausanne, Switzerland.
Gali, S., & Subramaniam, K. V. L. (2018). Multi-linear stress-crack separation relationship for steel fiber reinforced concrete: Analytical framework and experimental evaluation. Theoretical and Applied Fracture Mechanics, 93, 33–43. https://doi.org/10.1016/j.tafmec.2017.06.
GID. (2009). The Personal Pre and Post Processor. International Center for Numerical Methods in Engineering Barcelona.
Gribniak, V., Kaklauskas, G., Hung Kwan, A. K., Bacinskas, D., & Ulbinas, D. (2012). Deriving stress-strain relationships for steel fibre concrete in tension from tests of beams with ordinary reinforcement. Engineering Structures, 42, 387–395. https://doi.org/10.1016/j.engstruct.2012.04.
Hordijk, D.A. (1991). Local approach to fatigue of concrete (PhD Thesis, Delft University of Technology, Delft, Netherlands).
JCI. (2003). Method of test for fracture energy of concrete by use of notched beam. JCI-S-001e2003, Japan Concrete Institute Standard, Tokyo, Japan.
JCI. (2003). Method of test for load-displacement curve of fiber reinforced concrete by use of notched beam. JCI-S-002-2003, Japan Concrete Institute Standard, Tokyo, Japan.
Kannam, P., & Sarella, V. R. (2018). A study on validation of shear behaviour of steel fibrous SCC based on numerical modelling (ATENA). Journal of Building Engineering, 19, 69–79. https://doi.org/10.1016/j.jobe.2018.05.
Kasuga, A. (2017). Effects of butter web design on bridge construction. Structural Concrete, 18(1), 128–142. https://doi.org/10.1002/suco.
Lee, J. H., Cho, B., & Choi, E. (2017). Flexural capacity of fiber reinforced concrete with a consideration of concrete strength and fiber content. Construc-tion and Building Materials, 138, 222–231. https://doi.org/10.1016/j.conbuildmat.2017.01.
Li, B., Xu, L., Chi, Y., Huang, B., & Li, C. (2017). Experimental investigation on the stress-strain behavior of steel fiber reinforced concrete subjected to uniaxial cyclic compression. Construction and Building Materials, 140, 109–118. https://doi.org/10.1016/j.conbuildmat.2017.02.
Li, B., Xu, L., Shi, Y., Chi, Y., Liu, Q., & Li, C. (2018). Effects of fiber type, volume fraction and aspect ratio on the flexural and acoustic emission behav-iors of steel fiber reinforced concrete. Construction and Building Materials, 181, 474–486. https://doi.org/10.1016/j.conbuildmat.2018.06.
Menetrey, P., & Willam, K. J. (1995). Triaxial failure criterion for concrete and its generalization. Structural Journal, 92(3), 311-318.
Nour, A., Massicotte, B., de Montaignac, R., & Charron, J. P. (2015). Development of an inverse analysis procedure for the characterisation of softening diagrams for FRC beams and panels. Construction and Building Materials, 94, 35–44. https://doi.org/10.1016/j.conbuildmat.2015.06.049.
Planas, J., Guinea, G. V., & Elices, M. (1999). Size effect and inverse analysis in concrete fracture. International Journal of Fracture, 95(1), 367-378.
Poveda, E., Yu, R. C., Tarifa, M., Ruiz, G., Cunha, V. M. C. F., & Barros, J. A. O. (2020). Rate effect in inclined fibre pull-out for smooth and hooked-end fibres: a numerical study. International Journal of Fracture, 223(1–2), 135–149. https://doi.org/10.1007/s10704-019-00404-7.
Sajdlová, T. (2016). ATENA Program Documentation. Part 4-7. ATENA Science – GiD FRC Tutorial. Červenka Consulting, Prague.
Serna, P., Arango, S., Ribeiro, T., Núñez, A. M., & Garcia-Taengua, E. (2009). Structural cast-in-place SFRC: Technology, control criteria and recent applications in spain. Materials and Structures/Materiaux et Constructions, 42(9), 1233–1246. https://doi.org/10.1617/s11527-009-9540-9.
Sheng, P., Zhang, J., & Ji, Z. (2016). An advanced 3D modeling method for concrete-like particle-reinforced composites with high volume fraction of randomly distributed particles. Composites Science and Technology, 134, 26–35. https://doi.org/10.1016/j.compscitech.2016.08.009.
Soltanzadeh, F., Cunha, V. M. C. F., & Barros, J. A. O. (2019). Assessment of different methods for characterization and simulation of post-cracking behavior of self-compacting steel fiber reinforced concrete. Construction and Building Materials, 227. https://doi.org/10.1016/j.conbuildmat.2019.116704.
Uchida, Y., Kurihara, N., Rokugo, K., & Koyanagi, W. (1995). Determination of tension softening diagrams of various kinds of concrete by means of numerical analysis. Fracture mechanics of concrete structures, 1, 17-30.
van Mier, J. G. (1986). Multiaxial strain-softening of concrete. Materials and structures, 19(3), 190-200.
Wang, Z. L., Wu, J., & Wang, J. G. (2010). Experimental and numerical analysis on effect of fibre aspect ratio on mechanical properties of SRFC. Con-struction and Building Materials, 24(4), 559–565. https://doi.org/10.1016/j.conbuildmat.2009.09.009.
Woo, S. K., Kim, K. J., & Han, S. H. (2014). Tensile cracking constitutive model of Steel Fiber Reinforced Concrete (SFRC). KSCE Journal of Civil Engineering, 18(5), 1446–1454. https://doi.org/10.1007/s12205-014-0335-3.
Yoo, D. Y., Yoon, Y. S., & Banthia, N. (2015). Predicting the post-cracking behavior of normal- and high-strength steel-fiber-reinforced concrete beams. Construction and Building Materials, 93, 477–485. https://doi.org/10.1016/j.conbuildmat.2015.06.006.
Zhang, H., Huang, Y. J., Yang, Z. J., Xu, S. L., & Chen, X. W. (2018). A discrete-continuum coupled finite element modelling approach for fibre rein-forced concrete. Cement and Concrete Research, 106, 130–143. https://doi.org/10.1016/j.cemconres.2018.01.010.
Zhang, S., Zhang, C., Liao, L., Wang, C., & Zhao, R. (2020). Investigation into the effect of fibre distribution on the post-cracking tensile strength of SFRC through physical experimentation and numerical simulation. Construction and Building Materials, 248. https://doi.org/10.1016/j.conbuildmat.2020.118433.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Carlos Alberto Benedetty
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.