Effects of the incorporation of residue of masonry on the properties of cementitious mortars

Authors

  • Yimmy Fernando Silva Universidad del Valle (Colombia)
  • David A. Lange University of Illinois at Urbana-Champaign (United States), Urbana
  • Silvio Delvasto Universidad del Valle (Colombia)

DOI:

https://doi.org/10.7764/rdlc.19.3.407-421

Keywords:

Residue of masonry, supplementary cementitious material, pozzolan, hydration heat, shrinkage

Abstract

This paper presents results of an experimental study of a residue of masonry (RM), sampled from a construction and demolition waste (CDW), added as a supplementary cementitious material (SCM) to partially replace up to 50% of Portland cement in the preparation of mortars. The pozzolanic activity (fixed lime and strength activity index), setting time, heat of hydration, the (autogenous and drying) shrinkage and compressive strength tests were carried out. The results show how the RM has a positive activity because the increase of RM replacement level in the mortars generates a lower heat of hydration and autogenous and drying shrinkage. The fixed lime at 28 and 180 days, indicating that the RM exhibits in some degree pozzolanic activity and the Strength Activity Index (SAI) was 77.13% and 84.36% of the compressive strength of 100% OPC mortar at the 7 and 28 days respectively, which conformed to ASTM C311. These results indicate that RM should be considered appropriated for using as a supplementary cementitious material.

Downloads

Download data is not yet available.

Author Biographies

Yimmy Fernando Silva, Universidad del Valle (Colombia)

Estudiante de posgrado de ingenieria de materiales

David A. Lange, University of Illinois at Urbana-Champaign (United States), Urbana

Professor Department of Civil Engineering

Silvio Delvasto, Universidad del Valle (Colombia)

Escuela de Ingeneiria de los Materiales.

Profesor

References

Ahmad, T., Ahmad, K., & Alam, M. (2018). Investigating calcined filter backwash solids as supplementary cementitious material for recycling in construction practices. Construction and Building Materials, 175, 664–671. https://doi.org/10.1016/J.CONBUILDMAT.2018.04.227

Akhtar, A., & Sarmah, A. K. (2018). Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. Journal of Cleaner Production, 186, 262–281. https://doi.org/10.1016/J.JCLEPRO.2018.03.085

Baronio, G., & Binda, L. (1997). Study of the pozzolanicity of some bricks and clays. Construction and Building Materials, 11(1), 41–46. https://doi.org/10.1016/S0950-0618(96)00032-3

Bediako, M. (2018). Pozzolanic potentials and hydration behavior of ground waste clay brick obtained from clamp-firing technology. Case Studies in Construction Materials, 8, 1–7. https://doi.org/10.1016/J.CSCM.2017.11.003

Burrows, R. W. (1988). M-11: The Visible & Invisible Cracking of Concrete. Retrieved from https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/51683284

Carvalho, S. Z., Vernilli, F., Almeida, B., Oliveira, M. D., & Silva, S. N. (2018). Reducing environmental impacts: The use of basic oxygen furnace slag in portland cement. Journal of Cleaner Production, 172, 385–390. https://doi.org/10.1016/J.JCLEPRO.2017.10.130

Cheng, H. (2016). Reuse Research Progress on Waste Clay Brick. Procedia Environmental Sciences, 31, 218–226. https://doi.org/10.1016/J.PROENV.2016.02.029

Construction and demolition waste - Environment - European Commission. (2017). Retrieved October 3, 2019, from https://ec.europa.eu/environment/waste/construction_demolition.htm

Cyr, M., Lawrence, P., & Ringot, E. (2006). Efficiency of mineral admixtures in mortars: Quantification of the physical and chemical effects of fine admixtures in relation with compressive strength. Cement and Concrete Research, 36(2), 264–277. https://doi.org/10.1016/J.CEMCONRES.2005.07.001

De la Varga, I., Castro, J., Bentz, D. P., Zunino, F., & Weiss, J. (2018). Evaluating the hydration of high volume fly ash mixtures using chemically inert fillers. Construction and Building Materials, 161, 221–228. https://doi.org/10.1016/J.CONBUILDMAT.2017.11.132

de Oliveira Andrade, J. J., Possan, E., Squiavon, J. Z., & Ortolan T.L.P. (2018). Evaluation of mechanical properties and carbonation of mortars produced with construction and demolition waste. Construction and Building Materials, 161, 70–83. https://doi.org/10.1016/J.CONBUILDMAT.2017.11.089

Dellinghausen, L. M., Gastaldini, A. L., Vanzin, F. J., & Veiga, K. K. (2012). Total shrinkage, oxygen permeability, and chloride ion penetration in concrete made with white Portland cement and blast-furnace slag. Construction and Building Materials, 37, 652–659. https://doi.org/10.1016/J.CONBUILDMAT.2012.07.076

Frías, M., García, R., de la Villa, R. V., & Villar, E. (2013). The effect of binary pozzolan mix on the mineralogical changes in the ternary activated paper sludge–fly ash–Ca(OH)2 system. Construction and Building Materials, 38, 48–53. https://doi.org/10.1016/J.CONBUILDMAT.2012.08.045

Frías, M., Vigil de la Villa, R., García, R., Martínez-Ramírez, S., & Fernández-Carrasco, L. (2018). New developments in low clinker cement paste mineralogy. Applied Clay Science, 166, 94–101. https://doi.org/10.1016/J.CLAY.2018.09.009

Frølich, L., Wadsö, L., & Sandberg, P. (2016). Using isothermal calorimetry to predict one day mortar strengths. Cement and Concrete Research, 88, 108–113. https://doi.org/10.1016/J.CEMCONRES.2016.06.009

Gallucci, E., Zhang, X., & Scrivener, K. L. (2013). Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H). Cement and Concrete Research, 53, 185–195. https://doi.org/10.1016/J.CEMCONRES.2013.06.008

Ge, Z., Wang, Y., Sun, R., Wu, X., & Guan, Y. (2015). Influence of ground waste clay brick on properties of fresh and hardened concrete. Construction and Building Materials, 98, 128–136. https://doi.org/10.1016/J.CONBUILDMAT.2015.08.100

Ghafari, E., Ghahari, S. A., Costa, H., Júlio, E., Portugal, A., & Durães, L. (2016). Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete. Construction and Building Materials, 127, 43–48. https://doi.org/10.1016/J.CONBUILDMAT.2016.09.123

Gmür, R., Thienel, K.-C., & Beuntner, N. (2016). Influence of aging conditions upon the properties of calcined clay and its performance as supplementary cementitious material. Cement and Concrete Composites, 72, 114–124. https://doi.org/10.1016/J.CEMCONCOMP.2016.05.020

Gutiérrez, A. S., Caballero Eras, J. J., Gaviria, C. A., Caneghem, J. V., & Vandecasteele, C. (2017). Improved selection of the functional unit in environmental impact assessment of cement. Journal of Cleaner Production, 168, 463–473. https://doi.org/10.1016/J.JCLEPRO.2017.09.007

Harbi, R., Derabla, R., & Nafa, Z. (2017). Improvement of the properties of a mortar with 5% of kaolin fillers in sand combined with metakaolin, brick waste and glass powder in cement. Construction and Building Materials, 152, 632–641. https://doi.org/10.1016/J.CONBUILDMAT.2017.07.062

Heikal, M., Zohdy, K. M., & Abdelkreem, M. (2013). Mechanical, microstructure and rheological characteristics of high performance self-compacting cement pastes and concrete containing ground clay bricks. Construction and Building Materials, 38, 101–109. https://doi.org/10.1016/J.CONBUILDMAT.2012.07.114

Hu, X., Shi, Z., Shi, C., Wu, Z., Tong, B., Ou, Z., & de Schutter, G. (2017). Drying shrinkage and cracking resistance of concrete made with ternary cementitious components. Construction and Building Materials, 149, 406–415. https://doi.org/10.1016/J.CONBUILDMAT.2017.05.113

Izquierdo, S., Diaz, J., Mejía, R., & Torres, J. (2013). Cemento adicionado con un residuo del proceso de craqueo catalítico (FCC): hidratación y microestructura. Revista Ingeniería de Construcción, 28(2), 141–154. https://doi.org/10.4067/S0718-50732013000200003

Jiang, C., Jin, C., Wang, Y., Yan, S., & Chen, D. (2018). Effect of heat curing treatment on the drying shrinkage behavior and microstructure characteristics of mortar incorporating different content ground granulated blast-furnace slag. Construction and Building Materials, 186, 379–387. https://doi.org/10.1016/J.CONBUILDMAT.2018.07.079

Juenger, M. C. G., & Siddique, R. (2015). Recent advances in understanding the role of supplementary cementitious materials in concrete. Cement and Concrete Research, 78, 71–80. https://doi.org/10.1016/J.CEMCONRES.2015.03.018

Juilland, P., Kumar, A., Gallucci, E., Flatt, R. J., & Scrivener, K. L. (2012). Effect of mixing on the early hydration of alite and OPC systems. Cement and Concrete Research, 42(9), 1175–1188. https://doi.org/10.1016/J.CEMCONRES.2011.06.011

Kartini, K., Rohaidah, Zuraini, & Za. (2012). Performance of Ground Clay Bricks as Partial Cement Replacement in Grade 30 Concrete. Retrieved from https://www.semanticscholar.org/paper/Performance-of-Ground-Clay-Bricks-as-Partial-Cement-Kartini-Rohaidah/826f9bff21da9fd99124dc3135ce79514df210ba

Li, H., Dong, L., Jiang, Z., Yang, X., & Yang, Z. (2016). Study on utilization of red brick waste powder in the production of cement-based red decorative plaster for walls. Journal of Cleaner Production, 133, 1017–1026. https://doi.org/10.1016/J.JCLEPRO.2016.05.149

Li, W., Lang, L., Lin, Z., Wang, Z., & Zhang, F. (2017). Characteristics of dry shrinkage and temperature shrinkage of cement-stabilized steel slag. Construction and Building Materials, 134, 540–548. https://doi.org/10.1016/J.CONBUILDMAT.2016.12.214

Lin, K.-L., Chen, B.-Y., Chiou, C.-S., & An Cheng. (2010). Waste brick’s potential for use as a pozzolan in blended Portland cement. Waste Management & Research, 28(7), 647–652. https://doi.org/10.1177/0734242X09355853

Liu, J., Ou, Z., Mo, J., Wang, Y., & Wu, H. (2017). The effect of SCMs and SAP on the autogenous shrinkage and hydration process of RPC. Construction and Building Materials, 155, 239–249. https://doi.org/10.1016/J.CONBUILDMAT.2017.08.061

Liu, P., Gao, Y., Wang, F., Yang, J., Yu, X., Zhang, W., & Lu, Y. (2017). Superhydrophobic and self-cleaning behavior of Portland cement with lotus-leaf-like microstructure. Journal of Cleaner Production, 156, 775–785. https://doi.org/10.1016/J.JCLEPRO.2017.03.211

Liu, S., Zhang, T., Guo, Y., Wei, J., & Yu, Q. (2018). Effects of SCMs particles on the compressive strength of micro-structurally designed cement paste: Inherent characteristic effect, particle size refinement effect, and hydration effect. Powder Technology, 330, 1–11. https://doi.org/10.1016/J.POWTEC.2018.01.087

Lura, P., Jensen, O. M., & van Breugel, K. (2003). Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms. Cement and Concrete Research, 33(2), 223–232. https://doi.org/10.1016/S0008-8846(02)00890-6

Ma, B., Zhang, T., Tan, H., Liu, X., Mei, J., Qi, H., … Zou, F. (2018). Effect of triisopropanolamine on compressive strength and hydration of cement-fly ash paste. Construction and Building Materials, 179, 89–99. https://doi.org/10.1016/J.CONBUILDMAT.2018.05.117

Maddalena, R., Roberts, J. J., & Hamilton, A. (2018). Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements. Journal of Cleaner Production, 186, 933–942. https://doi.org/10.1016/J.JCLEPRO.2018.02.138

Mashaly, A. O., El-Kaliouby, B. A., Shalaby, B. N., El – Gohary, A. M., & Rashwan, M. A. (2016). Effects of marble sludge incorporation on the properties of cement composites and concrete paving blocks. Journal of Cleaner Production, 112, 731–741. https://doi.org/10.1016/J.JCLEPRO.2015.07.023

Mohammed, S. (2017). Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review. Construction and Building Materials, 140, 10–19. https://doi.org/10.1016/J.CONBUILDMAT.2017.02.078

Naceri, A., & Hamina, M. C. (2009). Use of waste brick as a partial replacement of cement in mortar. Waste Management, 29(8), 2378–2384. https://doi.org/10.1016/J.WASMAN.2009.03.026

Niewiadomski, P., Hoła, J., & Ćwirzeń, A. (2018). Study on properties of self-compacting concrete modified with nanoparticles. Archives of Civil and Mechanical Engineering, 18(3), 877–886. https://doi.org/10.1016/j.acme.2018.01.006

Payá, J., Monzó, J., Borrachero, M. ., & Velázquez, S. (2003). Evaluation of the pozzolanic activity of fluid catalytic cracking catalyst residue (FC3R). Thermogravimetric analysis studies on FC3R-Portland cement pastes. Cement and Concrete Research, 33(4), 603–609. https://doi.org/10.1016/S0008-8846(02)01026-8

Rezvani, M., & Proske, T. (2017). Influence of chemical-mineralogical properties of limestone on the shrinkage behaviour of cement paste and concrete made of limestone-rich cements. Construction and Building Materials, 157, 818–828. https://doi.org/10.1016/J.CONBUILDMAT.2017.09.101

Seco, A., Omer, J., Marcelino, S., Espuelas, S., & Prieto, E. (2018). Sustainable unfired bricks manufacturing from construction and demolition wastes. Construction and Building Materials, 167, 154–165. https://doi.org/10.1016/J.CONBUILDMAT.2018.02.026

Silva, Y. F., Robayo, R. A., Mattey, P. E., & Delvasto, S. (2016). Properties of self-compacting concrete on fresh and hardened with residue of masonry and recycled concrete. Construction and Building Materials, 124, 639–644. https://doi.org/10.1016/J.CONBUILDMAT.2016.07.057

Soriano, L., Monzó, J., Bonilla, M., Tashima, M. M., Payá, J., & Borrachero, M. V. (2013). Effect of pozzolans on the hydration process of Portland cement cured at low temperatures. Cement and Concrete Composites, 42, 41–48. https://doi.org/10.1016/J.CEMCONCOMP.2013.05.007

Suraneni, P., & Weiss, J. (2017). Examining the pozzolanicity of supplementary cementitious materials using isothermal calorimetry and thermogravimetric analysis. Cement and Concrete Composites, 83, 273–278. https://doi.org/10.1016/J.CEMCONCOMP.2017.07.009

Toledo Filho, R. D., Ghavami, K., Sanjuán, M. A., & England, G. L. (2005). Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres. Cement and Concrete Composites, 27(5), 537–546. https://doi.org/10.1016/J.CEMCONCOMP.2004.09.005

Topçu, İ. B., Uygunoğlu, T., & Hocaoğlu, İ. (2012). Electrical conductivity of setting cement paste with different mineral admixtures. Construction and Building Materials, 28(1), 414–420. https://doi.org/10.1016/J.CONBUILDMAT.2011.08.068

Uchima, J. S., Restrepo, O. J., & Tobón, J. I. (2015). Pozzolanicity of the material obtained in the simultaneous calcination of biomass and kaolinitic clay. Construction and Building Materials, 95, 414–420. https://doi.org/10.1016/J.CONBUILDMAT.2015.07.104

Uysal, M., Akyuncu, V., Tanyildizi, H., Sumer, M., & Yildirim, H. (2019). Optimization of durability properties of concrete containing fly ash using Taguchi’s approach and Anova analysis. Revista de La Construcción, 17(3), 364–382. https://doi.org/10.7764/RDLC.17.3.364

Williams, A., Markandeya, A., Stetsko, Y., Riding, K., & Zayed, A. (2016). Cracking potential and temperature sensitivity of metakaolin concrete. Construction and Building Materials, 120, 172–180. https://doi.org/10.1016/J.CONBUILDMAT.2016.05.087

Wu, L., Farzadnia, N., Shi, C., Zhang, Z., & Wang, H. (2017a). Autogenous shrinkage of high performance concrete: A review. Construction and Building Materials, 149, 62–75. https://doi.org/10.1016/J.CONBUILDMAT.2017.05.064

Wu, L., Farzadnia, N., Shi, C., Zhang, Z., & Wang, H. (2017b). Autogenous shrinkage of high performance concrete: A review. Construction and Building Materials, 149, 62–75. https://doi.org/10.1016/J.CONBUILDMAT.2017.05.064

Yao, G., Liu, Q., Wang, J., Wu, P., & Lyu, X. (2019). Effect of mechanical grinding on pozzolanic activity and hydration properties of siliceous gold ore tailings. Journal of Cleaner Production, 217, 12–21. https://doi.org/10.1016/J.JCLEPRO.2019.01.175

Yousefieh, N., Joshaghani, A., Hajibandeh, E., & Shekarchi, M. (2017). Influence of fibers on drying shrinkage in restrained concrete. Construction and Building Materials, 148, 833–845. https://doi.org/10.1016/J.CONBUILDMAT.2017.05.093

Yuan, Q., Zhou, D., Li, B., Huang, H., & Shi, C. (2018). Effect of mineral admixtures on the structural build-up of cement paste. Construction and Building Materials, 160, 117–126. https://doi.org/10.1016/J.CONBUILDMAT.2017.11.050

Zeyad, A. M., Tayeh, B. A., & Yusuf, M. O. (2019). Strength and transport characteristics of volcanic pumice powder based high strength concrete. Construction and Building Materials, 216, 314–324. https://doi.org/10.1016/J.CONBUILDMAT.2019.05.026

Zheng, L., Wu, H., Zhang, H., Duan, H., Wang, J., Jiang, W., … Song, Q. (2017). Characterizing the generation and flows of construction and demolition waste in China. Construction and Building Materials, 136, 405–413. https://doi.org/10.1016/J.CONBUILDMAT.2017.01.055

Zhou, D., Wang, R., Tyrer, M., Wong, H., & Cheeseman, C. (2017). Sustainable infrastructure development through use of calcined excavated waste clay as a supplementary cementitious material. Journal of Cleaner Production, 168, 1180–1192. https://doi.org/10.1016/J.JCLEPRO.2017.09.098

Downloads

Published

2020-12-25

How to Cite

Silva, Y. F., Lange, D. A., & Delvasto, S. (2020). Effects of the incorporation of residue of masonry on the properties of cementitious mortars. Revista De La Construcción. Journal of Construction, 19(3), 407–421. https://doi.org/10.7764/rdlc.19.3.407-421