Investigation of mechanical properties of polymer impregnated concrete containing polypropylene fiber by taguchi and anova methods
DOI:
https://doi.org/10.7764/RDLC.20.1.52Keywords:
polypropylene fiber, mechanical properties, taguchi, anova analysis, polymer impregnated concreteAbstract
The mechanical properties of polymer impregnated concrete containing polypropylene fiber were statistically and experimentally examined in this study. Taguchi L9 (33) was used in this study. The variables used for experiments were selected as the polypropylene fiber ratio (0%, 1% and 2%), cement dosage (300, 350 and 400 kg/m3) and curing time (7, 14 and 28 days). After the specimens were cured at the specified curing times, they were dried at 105 ±5 °C. Then, the monomer was impregnated to the specimens for 24 hours under atmospheric conditions. The samples for the polymerization of monomer was kept within the drying oven at 60 °C for 6 hours. The compressive strength and ultrasonic pulse velocity tests of specimens, in which polymerization was applied, was conducted. Furthermore, the dynamic modulus of elasticity of samples was calculated using the ultrasonic pulse velocity. The Taguchi analysis found that the best values for the ultrasonic pulse velocity, dynamic modulus of elasticity and compressive strength were 28 days for curing, 1% for the polypropylene fiber percentage and 400 kg/m3 for the cement dosage. The Anova analysis found that the polypropylene fiber percentage had the biggest effect on the mechanical properties of polymer impregnated concrete containing polypropylene fiber.
Downloads
References
Akça, K. I. R., Çakir, Ö., & Ipek, M. (2015). Properties of polypropylene fiber reinforced concrete using recycled aggregates. Construction and Building Materials, 98, 620–630. https://doi.org/10.1016/j.conbuildmat.2015.08.133
Al-Rousan, R. Z., Haddad, R. H., & Swesi, A. O. (2015). Repair of shear-deficient normal weight concrete beams damaged by thermal shock using advanced composite materials. Composites Part B: Engineering, 70, 20–34. https://doi.org/10.1016/j.compositesb.2014.10.032
Alfahdawi, I. H., Osman, S. A., Hamid, R., & Al-Hadithi, A. I. (2018). Modulus of elasticity and ultrasonic pulse velocity of concrete containing polyethylene terephthalate (pet) waste heated to high temperature. Journal of Engineering Science and Technology, 13(11), 3577–3592.
ASTM C597. (2016). Standard Test Method for Pulse Velocity Through Concrete. American Society for Testing and Materials, West Conshohocken, PA, USA.
Atis, C. D., Tanyildizi, H., & Karahan, O. (2009). Statistical analysis for strength properties of polypropylene-fibre- reinforced fly ash concrete. Magazine of Concrete Research, 61(7), 557–566. https://doi.org/10.1680/macr.2007.00033
Auskern, A., & Horn, W. (1971). Some properties of polymer impregnated cements and concretes. Composites, 2(4), 257. https://doi.org/10.1016/0010-4361(71)90187-x
Awal, A. S. M. A., & Shehu, I. A. (2015). Performance evaluation of concrete containing high volume palm oil fuel ash exposed to elevated temperature. Construction and Building Materials, 76, 214–220. https://doi.org/10.1016/j.conbuildmat.2014.12.001
Bal, H. (1999). Investigation of the usability of some polymers in mortars. MSc thesis, Firat Univ., Elazig.
Behfarnia, K., & Behravan, A. (2014). Application of high performance polypropylene fibers in concrete lining of water tunnels. Materials and Design, 55, 274–279. https://doi.org/10.1016/j.matdes.2013.09.075
Behfarnia, K., & Farshadfar, O. (2013). The effects of pozzolanic binders and polypropylene fibers on durability of SCC to magnesium sulfate attack. Construction and Building Materials, 38, 64–71. https://doi.org/10.1016/j.conbuildmat.2012.08.035
Bhutta, M. A. R., Maruya, T., & Tsuruta, K. (2013). Use of polymer-impregnated concrete permanent form in marine environment: 10-year outdoor exposure in Saudi Arabia. Construction and Building Materials, 43, 50–57. https://doi.org/10.1016/j.conbuildmat.2013.01.028
Bogas, J. A., Gomes, M. G., & Gomes, A. (2013). Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method. Ultrasonics, 53(5), 962–972. https://doi.org/10.1016/j.ultras.2012.12.012
Carstens, P. A. B., Marais, S. A., & Thompson, C. J. (2000). Improved and novel surface fluorinated products. Journal of Fluorine Chemistry, 104(1), 97–107. https://doi.org/10.1016/S0022-1139(00)00232-3
Chandra, S., & Ohama, Y. (1994). Polymers in concrete. United States: CRC press. Available on: https://books.google.com/books?hl=tr&lr=&id=QtiXvpoc4SEC&oi=fnd&pg=PA1&dq=polymers+in+concrete&ots=fNZLcA48LX&sig=V0_LHO5ZOWwEwTq-VjdhrlDf61o
Chandrappa, A. K., & Biligiri, K. P. (2016). Influence of mix parameters on pore properties and modulus of pervious concrete: an application of ultrasonic pulse velocity. Materials and Structures/Materiaux et Constructions, 49(12), 5255–5271. https://doi.org/10.1617/s11527-016-0858-9
Chen, C. H., Huang, R., Wu, J. K., & Chen, C. H. (2006). Influence of soaking and polymerization conditions on the properties of polymer concrete. Construction and Building Materials, 20(9), 706–712. https://doi.org/10.1016/j.conbuildmat.2005.02.003
Chmielewska, B. (2008). Adhesion Strength and Other Mechanical Properties of SBR Modified Concrete. International Journal of Concrete Structures and Materials, 2(1), 3–8. https://doi.org/10.4334/ijcsm.2008.2.1.003
Czigány, T. (2006). Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: Mechanical properties and acoustic emission study. Composites Science and Technology, 66(16), 3210–3220. https://doi.org/10.1016/j.compscitech.2005.07.007
Davim, J. P. (2001). A note on the determination of optimal cutting conditions for surface finish obtained in turning using design of experiments. Journal of Materials Processing Technology, 116(2–3), 305–308. https://doi.org/10.1016/S0924-0136(01)01063-9
Deák, T., Czigány, T., Tamás, P., & Németh, C. (2010). Enhancement of interfacial properties of basalt fiber reinforced nylon 6 matrix composites with silane coupling agents. Express Polymer Letters, 4(10), 590–598. https://doi.org/10.3144/expresspolymlett.2010.74
Ezziane, M., Kadri, T., Molez, L., Jauberthie, R., & Belhacen, A. (2015). High temperature behaviour of polypropylene fibres reinforced mortars. Fire Safety Journal, 71, 324–331. https://doi.org/10.1016/j.firesaf.2014.11.022
Ghaffari Moghaddam, F., Akbarpour, A., & Firouzi, A. (2021). Dynamic modulus of elasticity and compressive strength evaluations of modified reactive powder concrete (MRPC) by non-destructive ultrasonic pulse velocity method. Journal of Asian Architecture and Building Engineering, 2020, 1-10. https://doi.org/10.1080/13467581.2020.1869020
Grdic, Z. J., Curcic, G. A. T., Ristic, N. S., & Despotovic, I. M. (2012). Abrasion resistance of concrete micro-reinforced with polypropylene fibers. Construction and Building Materials, 27(1), 305–312. https://doi.org/10.1016/j.conbuildmat.2011.07.044
Grzybowski, M., & Shah, S. P. (1990). Shrinkage cracking of fiber reinforced concrete, 87(2), 138–148. Available on: https://www.mendeley.com/catalogue/dead6889-7119-3a0c-8649-806358bebde8/
Güneyisi, E., Gesoʇlu, M., Booya, E., & Mermerdaş, K. (2015). Strength and permeability properties of self-compacting concrete with cold bonded fly ash lightweight aggregate. Construction and Building Materials, 74, 17–24. https://doi.org/10.1016/j.conbuildmat.2014.10.032
Heidarnezhad, F., Jafari, K., & Ozbakkaloglu, T. (2020). Effect of polymer content and temperature on mechanical properties of lightweight polymer concrete. Construction and Building Materials, 260, 119853. https://doi.org/10.1016/j.conbuildmat.2020.119853
Kadela, M., Kukiełka, A., & Małek, M. (2020). Characteristics of Lightweight Concrete Based on a Synthetic Polymer Foaming Agent. Materials, 13(21), 4979. https://doi.org/10.3390/ma13214979
Karahan, O., Tanyildizi, H., & Atis, C. D. (2008). An artificial neural network approach for prediction of long-term strength properties of steel fiber reinforced concrete containing fly ash. Journal of Zhejiang University: Science A, 9(11), 1514–1523. https://doi.org/10.1631/jzus.A0720136
Kewalramani, M. A., & Gupta, R. (2006). Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks. Automation in Construction, 15(3), 374–379. https://doi.org/10.1016/j.autcon.2005.07.003
Li, J. (2009). The research on the interfacial compatibility of polypropylene composite filled with surface treated carbon fiber. Applied Surface Science, 255(20), 8682–8684. https://doi.org/10.1016/j.apsusc.2009.06.053
Lin, Y., Hsiao, C., Yang, H., & Lin, Y. F. (2011). The effect of post-fire-curing on strengthvelocity relationship for nondestructive assessment of fire-damaged concrete strength. Fire Safety Journal, 46(4), 178–185. https://doi.org/10.1016/j.firesaf.2011.01.006
Liu, G., Cheng, W., & Chen, L. (2017). Investigating and optimizing the mix proportion of pumping wet-mix shotcrete with polypropylene fiber. Construction and Building Materials, 150, 14–23. https://doi.org/10.1016/j.conbuildmat.2017.05.169
López-Buendía, A. M., Romero-Sánchez, M. D., Climent, V., & Guillem, C. (2013). Surface treated polypropylene (PP) fibres for reinforced concrete. Cement and Concrete Research, 54, 29–35. https://doi.org/10.1016/j.cemconres.2013.08.004
Małek, M., Jackowski, M., Łasica, W., & Kadela, M. (2020). Characteristics of recycled polypropylene fibers as an addition to concrete fabrication based on portland cement. Materials, 13(8), 1827. https://doi.org/10.3390/MA13081827
Matkó, S., Anna, P., Marosi, G., Szép, A., Keszei, S., Czigány, T., & Pölöskei, K. (2003). Use of Reactive Surfactants in Basalt Fiber Reinforced Polypropylene Composites. In Macromolecular Symposia (Vol. 202, pp. 255–268). Weinheim: WILEY‐VCH Verlag. https://doi.org/10.1002/masy.200351222
Monteiro, P. J. M., & Mehta, P. K. (2006). Concrete: Microstructure, Properties and Materials | Request PDF (Mc Graw Hill). Available on: https://www.researchgate.net/publication/263351386_Concrete_Microstructure_Properties_and_Materials
Monteny, J., De Belie, N., Yincke, E., Beeldens, A., & Taerwe, L. (2001). Simulation of corrosion in sewer systems by laboratory testing. In Proceedings - fib-Symposium on Concrete and Environment 2001 (pp. 91–92). Deutscher Beton und Bautechnik Verein E.V (German Society for Concrete and Construction Technology).
Moreira, P. M., Aguiar, J. B., & Camões, A. (2006). Systems for superficial protection of concretes. In ISPIC 2006 International Symposium on Polymers in Concrete. Guimarães. Available on: https://repositorium.sdum.uminho.pt/handle/1822/6141
Ogawa H., Kano K., Mimura T., Nagai K., Shirai A., O. Y. (2007). Durability Performance of Barrier Penetrants on Concrete Surfaces. In 12th International Congress on Polymers in Concrete (pp. 373–382). Chuncheon- Korea. Available on: https://scholar.google.com/scholar?hl=tr&as_sdt=0%2C5&q=Durability+Performance+of+Barrier+Penetrants+on+Concrete+Surfaces&btnG=
Phadke, M. (1995). Quality Engineering Using Robust Design. Prentice Hall International.
Pişkin, A. (2010). Usability of Glass Powder in Polymer Concrete. Sakarya university.
Prasad, V. D., Prakash, E. L., Abishek, M., Dev, K. U., & Kiran, C. S. (2018). Study on concrete containing Waste Foundry Sand, Fly Ash and Polypropylene fibre using Taguchi Method. Materials Today: Proceedings, 5(11), 23964-23973. https://doi.org/10.1016/j.matpr.2018.10.189
Puy, G. W. D., & Dikeou, J. T. (1974). Polymer in concrete. American Concrete Institute. Available on: https://scholar.google.com/scholar?hl=tr&as_sdt=0%2C5&q=Puy+G.W.D.%2C+Dikeou+J.T.++%22Polymer+in+Concrete%22&btnG=
Ross, P. J. (1996). Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design. Available on: https://books.google.com.tr/books?id=CiunygZ90TsC&q=Taguchi+techniques+for+quality+engineering&dq=Taguchi+techniques+for+quality+engineering&hl=tr&sa=X&ved=2ahUKEwjsrLrB-J3uAhWjAxAIHXNSDngQ6AEwAHoECAYQAg
Shariq, M., Prasad, J., & Masood, A. (2013). Studies in ultrasonic pulse velocity of concrete containing GGBFS. Construction and Building Materials, 40, 944–950. https://doi.org/10.1016/j.conbuildmat.2012.11.070
Shıraı A., Kano K., Nagai K., Ide K., Ogawa H., O. Y. (2007). Basic Properties of Barrier Penetrants as Polymeric Impregnants For Concrete Surfaces. In 12th International Congress on Polymers in Concrete, (pp. 607–615). Chuncheon-Korea. Available on: https://scholar.google.com/scholar?hl=tr&as_sdt=0%2C5&q=Basic+Properties+of+Barrier+Penetrants+as+Polymeric+Impregnants+For+Concrete+Surfaces&btnG=
Sidney, R., & Young, J. F. (1981). Concrete. Prentice Hall. Englewood Cliffs. Available on: https://scholar.google.com/scholar?hl=tr&as_sdt=0%2C5&q=R.+Sidney%2C+J.F.+Young+Concrete.+Prentice+Hall%2C+Inc%2C+Englewood+Cliffs.+New+jersey+07632+%281981%29.&btnG=
Sobczak, L., Brüggemann, O., & Putz, R. F. (2013). Polyolefin composites with natural fibers and wood‐modification of the fiber/filler–matrix interaction. Journal of Applied Polymer Science, 127(1), 1-17. https://doi.org/10.1002/app.36935
Srubar, W. V. (2015). Stochastic service-life modeling of chloride-induced corrosion in recycled-aggregate concrete. Cement and Concrete Composites, 55, 103–111. https://doi.org/10.1016/j.cemconcomp.2014.09.003
Swamy, R. N., & Bouikni, A. (1990). Some engineering properties of slag concrete as influenced by mix proportioning and curing. ACI Materials Journal, 87(3), 210–220. https://doi.org/10.14359/2148
Tanaka, T., Tsuruta, K., & Naitou, T. Development and application of polymer impregnated concrete. In Proc of the first fib congress, Osaka, concrete structures in the 21st century 6 (pp. 347–354), Osaka, Japan, October, 2002.
Tanyildizi, H. (2014). Post-fire behavior of structural lightweight concrete designed by Taguchi method. Construction and Building Materials, 68, 565–571. https://doi.org/10.1016/j.conbuildmat.2014.07.021
Tanyildizi, H. (2018a). Long-term microstructure and mechanical properties of polymer-phosphazene concrete exposed to freeze-thaw. Construction and Building Materials, 187, 1121–1129. https://doi.org/10.1016/j.conbuildmat.2018.08.068
Tanyildizi, H. (2018b). Long-term performance of the healed mortar with polymer containing phosphazene after exposed to sulfate attack. Construction and Building Materials, 167, 473–481. https://doi.org/10.1016/j.conbuildmat.2018.02.054
TANYILDIZI, H. (2020). Investigation of carbonation performance of polymer-phosphazene concrete using Taguchi optimization method. Construction and Building Materials, 273, 121673. https://doi.org/10.1016/j.conbuildmat.2020.121673
Tanyildizi, H., & Asilturk, E. (2018a). High temperature resistance of polymer-phosphazene concrete for 365 days. Construction and Building Materials, 174, 741–748. https://doi.org/10.1016/j.conbuildmat.2018.04.078
Tanyildizi, H., & Asilturk, E. (2018b). Performance of Phosphazene-Containing Polymer-Strengthened Concrete after Exposure to High Temperatures. Journal of Materials in Civil Engineering, 30(12), 04018329. https://doi.org/10.1061/(asce)mt.1943-5533.0002505
Tanyildizi, H., Coşkun, A., & Somunkiran, I. (2008). An experimental investigation of bond and compressive strength of concrete with mineral admixtures at high temperatures. Arabian Journal for Science and Engineering, 33(2B), 443–449. Available on: https://www.researchgate.net/publication/268434657
Tanyildizi, H., & Şahin, M. (2017). Taguchi optimization approach for the polypropylene fiber reinforced concrete strengthening with polymer after high temperature. Structural and Multidisciplinary Optimization, 55(2), 529–534. https://doi.org/10.1007/s00158-016-1517-z
Tenza-Abril, A. J., Benavente, D., Pla, C., Baeza-Brotons, F., Valdes-Abellan, J., & Solak, A. M. (2020). Statistical and experimental study for determining the influence of the segregation phenomenon on physical and mechanical properties of lightweight concrete. Construction and Building Materials, 238, 117642. https://doi.org/10.1016/j.conbuildmat.2019.117642
Tosun, G., & Tosun, N. (2012). Analysis of process parameters for porosity in porous NiTi implants. Materials and Manufacturing Processes, 27(11), 1184–1188. https://doi.org/10.1080/10426914.2011.648692
TS EN 12390-3. (2019). Testing Hardened Concrete Part 3: Compressive Strength of Test Specimens. Turkey. Available on: https://intweb.tse.org.tr/Standard/Standard/Kapak.aspx?081118051115108051104119110104055047105102120088111043113104073099106116122117110080075069113084
Unterweger, C., Brüggemann, O., & Fürst, C. (2014a). Effects of different fibers on the properties of short-fiber-reinforced polypropylene composites. Composites Science and Technology, 103, 49-55. https://doi.org/10.1016/j.compscitech.2014.08.014
Unterweger, C., Brüggemann, O., & Fürst, C. (2014b). Synthetic fibers and thermoplastic short-fiber-reinforced polymers: Properties and characterization. Polymer Composites, 35(2), 227–236. https://doi.org/10.1002/pc.22654
Uysal, M., Akyuncu, V., Tanyildizi, H., Sumer, M., & Yildirim, H. (2019). Optimization of durability properties of concrete containing fly ash using Taguchi’s approach and Anova analysis. Revista de La Construccion, 17(3), 364–382. https://doi.org/10.7764/RDLC.17.3.364
Whiting, D., & Kline, D. E. (1976). Theoretical predictions of the elastic moduli of polymer-impregnated hardened cement paste and mortars. Journal of Applied Polymer Science, 20(12), 3353–3363. https://doi.org/10.1002/app.1976.070201215
Yalçın, F. (1998). Studies of some mechanical properties of polymer impregnated concrete. MSc thesis, Cumhuriyet Univ., Sivas.
Yang, Z., Shi, X., Creighton, A. T., & Peterson, M. M. (2009). Effect of styrene-butadiene rubber latex on the chloride permeability and microstructure of Portland cement mortar. Construction and Building Materials, 23(6), 2283–2290. https://doi.org/10.1016/j.conbuildmat.2008.11.011
Yermak, N., Pliya, P., Beaucour, A. L., Simon, A., & Noumowé, A. (2017). Influence of steel and/or polypropylene fibres on the behaviour of concrete at high temperature: Spalling, transfer and mechanical properties. Construction and Building Materials, 132, 240–250. https://doi.org/10.1016/j.conbuildmat.2016.11.120
Yılmaz, B., Dinç, A., Şengül, C., Akaya, Y., & Taşdemir, M. (2007). Effects of cement/powder ratio on workability and mechanical behaviour of SCFRCs. In International conferance on ACBM (p. 11). Lahore: ACI. Available on: https://scholar.google.com/scholar?hl=tr&as_sdt=0%2C5&q=Effects+of+cement%2Fpowder+ratio+on+workability+and+mechanical+behaviour+of+SCFRCs&btnG=
Zoalfakar, S. H., Elsissy, M. A. R., & Shaheen, Y. B. (2020). Multi-Response Optimization of Post-Fire Residual Properties of High Performance Concrete. Bulletin of the Faculty of Engineering. Mansoura University, 40(1), 83-97.